Regulated transport of sulfate and oxalate by SLC26A2/DTDST.

نویسندگان

  • John F Heneghan
  • Arash Akhavein
  • Maria J Salas
  • Boris E Shmukler
  • Lawrence P Karniski
  • David H Vandorpe
  • Seth L Alper
چکیده

Nephrolithiasis in the Slc26a6(-/-) mouse is accompanied by 50-75% reduction in intestinal oxalate secretion with unchanged intestinal oxalate absorption. The molecular identities of enterocyte pathways for oxalate absorption and for Slc26a6-independent oxalate secretion remain undefined. The reported intestinal expression of SO(4)(2-) transporter SLC26A2 prompted us to characterize transport of oxalate and other anions by human SLC26A2 and mouse Slc26a2 expressed in Xenopus oocytes. We found that hSLC26A2-mediated [(14)C]oxalate uptake (K(1/2) of 0.65 +/- 0.08 mM) was cis-inhibited by external SO(4)(2-) (K(1/2) of 3.1 mM). hSLC26A2-mediated bidirectional oxalate/SO(4)(2-) exchange exhibited extracellular SO(4)(2-) K(1/2) of 1.58 +/- 0.44 mM for exchange with intracellular [(14)C]oxalate, and extracellular oxalate K(1/2) of 0.14 +/- 0.11 mM for exchange with intracellular (35)SO(4)(2-). Influx rates and K(1/2) values for mSlc26a2 were similar. hSLC26A2-mediated oxalate/Cl(-) exchange and bidirectional SO(4)(2-)/Cl(-) exchange were not detectably electrogenic. Both SLC26A2 orthologs exhibited nonsaturable extracellular Cl(-) dependence for efflux of intracellular [(14)C]oxalate, (35)SO(4)(2-), or (36)Cl(-). Rate constants for (36)Cl(-) efflux into extracellular Cl(-), SO(4)(2-), and oxalate were uniformly 10-fold lower than for oppositely directed exchange. Acidic extracellular pH (pH(o)) inhibited all modes of hSLC26A2-mediated anion exchange. In contrast, acidic intracellular pH (pH(i)) selectively activated exchange of extracellular Cl(-) for intracellular (35)SO(4)(2-) but not for intracellular (36)Cl(-) or [(14)C]oxalate. Protein kinase C inhibited hSLC26A2 by reducing its surface abundance. Diastrophic dysplasia mutants R279W and A386V of hSLC26A2 exhibited similar reductions in uptake of both (35)SO(4)(2-) and [(14)C]oxalate. A386V surface abundance was reduced, but R279W surface abundance was at wild-type levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solute Carrier family 26 member a 2 ( Slc 26 a 2 ) functions as an electroneutral SO 4 = / OH - / Cl - exchanger regulated by extracellular

Slc26a2 is a ubiquitously expressed SO4 transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO4 and the ion gradients that mediate SO4 uptake are poorly understood. We report here that Slc26a2 functions as a SO4/2OH, SO4/2Cl and SO4/OH/Cl exchanger, depending on the ...

متن کامل

A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype.

Mutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is...

متن کامل

Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To ...

متن کامل

Autosomal Recessive Multiple Epiphyseal Dysplasia in a Korean Girl Caused by Novel Compound Heterozygous Mutations in the DTDST (SLC26A2) Gene

Multiple epiphyseal dysplasia is caused by heterogeneous genotypes involving more than six genes. Recessive mutations in the DTDST gene cause a phenotype of recessive multiple epiphyseal dysplasia (rMED). The authors report a 9-yr old Korean girl with the rMED phenotype having novel compound heterozygous mutations in the DTDST gene, which were inherited from both parents. This is the first Kore...

متن کامل

Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells.

Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of maligna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010